Tuesday, 25 November 2014

Data Structure and Algorithm - Detect the Repetitive Sub-string

1. Problem Description
Yet again this is a Google Interview Question for Software Engineer/Developer on careerup. Here is the description on that thread.

"Given a string (1-d array) , find if there is any sub-sequence that repeats itself. 
Here, sub-sequence can be a non-contiguous pattern, with the same relative order. 

Eg: 

1. abab <------yes, ab is repeated 
2. abba <---- No, a and b follow different order 
3. acbdaghfb <-------- yes there is a followed by b at two places 
4. abcdacb <----- yes a followed by b twice 

The above should be applicable to ANY TWO (or every two) characters in the string and optimum over time. 

In the sense, it should be checked for every pair of characters in the string."

2. Solution
As we are looking for repeating sub-string, therefore any character that appears only once will not count. We only care about these characters that appears  multiple times.

A string with characters appearing more than twice
Given a string as "...asdfasxabcbdkldjfadxkldjkadxadsfads...", character 'x' appears 3 or more times, then I believe that this is a repetitive string, because the second 'x' follows up the first one and the third one follows up the second. So it is repetitive.
Therefore a string has any character appearing more than twice, then it is a repetitive string.

A string with all characters appearing no greater twice
As we discussed above, those characters that appear only once are out of interest and they can be removed as noise. Assume that we remove the noise and only characters that appear twice remain. Let's examine what they should look like. Let's take an arbitrary example, a, b, c and d appear twice. If we have starting string as "abcd", what could be the next string in order to make this string non-repetitive. Obviously here are 4 options.
    - If it is 'a', then definitely this is a repetitive string because b, c, and d will appear after second 'a'.
    - If 'b', then definitely this is a repetitive string because c and d will appear after second 'b'.
    - If 'c', then definitely this is a repetitive string because d will appear after second 'c'.
    - If 'd', undecided and dependent on what the next follows up.

This is actually telling us a very interesting story. If a string, whose characters all appear twice, has to be a palindrome, then it will be qualified as non-repetitive string. Otherwise it will definitely be a repetitive string. Here summarize the pseudo-code:
    - Detect each character's appearance. Return true, if any appears more than twice
    - Strip out all characters that appear only once.
    - Check if the rest string is palindrome. If yes, return false otherwise return true.

Complexity analysis
A linear solution is implemented. Use a hash map to record/detect the appearance of characters, which can be used to strip out all the characters that appear only once.Then checking if the remaining string is palindrome can be done in linear solution as well by doing comparison from both ends. So overall this is a linear solution on both algorithm complexity and space complexity.

3. C++ Implementation
// ********************************************************************************
// IMPLEMENTATION
// ********************************************************************************
#include <string>
#include <unordered_map>
#include <vector>

#include <cassert>

typedef std::unordered_map<size_t, size_t> FrequencyMap;

bool IsPalindrome(const std::string& myStr)
{
    if (myStr.empty()) {
        return false;
    }

    const size_t len = myStr.size();
    if (len == 1) {
        return true;
    }

    for (size_t start = 0, end = len - 1; start < end; ++start, --end) {
        if (myStr[start] != myStr[end]) {
            return false;
        }
    }

    return true;
}

bool DetectFrequencyAndReturnFalseIGreaterThan2(const std::string& myStr, FrequencyMap& freqMap)
{
    for (std::string::const_iterator cIt = myStr.begin(); cIt != myStr.end(); ++cIt) {
        FrequencyMap::iterator found = freqMap.find(*cIt);
        if (found == freqMap.end()) {
            freqMap.insert(std::make_pair(*cIt, 1));
        }
        else {
            ++found->second;
            if (found->second > 2) {
                return true;
            }
        }
    }

    return false;
}

std::string StripCharsAppearingOnlyOnce(const std::string& myStr, const FrequencyMap& freqMap)
{
    std::string result;
    for (std::string::const_iterator cIt = myStr.begin(); cIt != myStr.end(); ++cIt) {
        FrequencyMap::const_iterator found = freqMap.find(*cIt);
        assert(found != freqMap.end());
        if (found->second == 2) {
            result.push_back(*cIt);
        }
    }

    return result;
}

bool FindRepeatedSequence(const std::string& myStr)
{
    FrequencyMap freqMap;
    if (DetectFrequencyAndReturnFalseIGreaterThan2(myStr, freqMap)) {
        return true;
    }

    std::string stringWithCharAppearingTwice = StripCharsAppearingOnlyOnce(myStr, freqMap);
    if (stringWithCharAppearingTwice.empty() || stringWithCharAppearingTwice.size() < 4) {
        return false;
    }

    return !IsPalindrome(stringWithCharAppearingTwice);
}

// ********************************************************************************
// TEST
// ********************************************************************************
void TestCases()
{
    assert(FindRepeatedSequence("aaa") == true);
    assert(FindRepeatedSequence("abab") == true);
    assert(FindRepeatedSequence("abba") == false);
    assert(FindRepeatedSequence("acbdaghfb") == true);
    assert(FindRepeatedSequence("abcdacb") == true);
}
// ********************************************************************************

Thursday, 20 November 2014

Data Structure and Algorithm - Find the Largest Number within K Swaps

1. Problem Description
Yet again this is another Google Interview Question for Software Developer/Engineer in careerup. Here is the original description of the thread.

"Given a number M (N-digit integer) and K-swap operations(a swap 
operation can swap 2 digits), devise an algorithm to get the maximum possible integer? 
Examples: 
M = 132 K = 1 output = 312 
M = 132 K = 2 output = 321 
M = 7899 k = 2 output = 9987 
M = 8799 and K = 2 output = 9987"

2. Solution
Let's take a close look at this problem. For any number there is always a global maximal and minimal value. The global maximal value is to number that have all the digits in the descending order from the left to the right direction. The minimal value is the number that have all the digits in ascending order except that the starting digit can be 0.)

How much swap to get the maximal value?
Given a number with any arbitrary order, at the most it needs (N-1) swaps to get the global maximal value, where N is the number of digits this number has. Simply each time find the biggest digit and swap it to the left side. For instance,
    - Number = 8765432109
        * 9765432108
        * 9865432107
        * 9875432106
        * 9876432105
        * 9876532104
        * 9876542103
        * 9876543102
        * 9876543201
        * 9876543210
This example is the worst case that need 9 (10 digits - 1) swaps, because each swap will result in the biggest digit out of place. The last swap will make the two digits in place, and this is where (-1) comes from in (N - 1).

Swap distance
We all know about the edit distance between two strings. Literally it represents how many modifications is needed to make two strings equal, assuming that each adding, removing and modifying as 1 distance.
Then what is swap distance? Assume we represent a  number with std::string with 10 chars, '0' - '9'. The swap distance represents how many swaps is needed to reach the global maximal value given a number in any shape with each swap as 1 distance. And we already know that the swap distance will be no more than (N-1), where N is the size of the string.

Solution of this problem
Here we know that there is a global maximal value for any number. And we always can reach this global maximal value if given enough swaps. So if given K swaps, we would like to reach a number as close to the global maximal value as possible. This means that first we need to find the right digits to swap and secondly these digits should be in descending order after swaps.

How to find the right digits for these K swaps and how to swap? The idea is to match the global maximal value for the left to the right. Swap as many as biggest digits to the left and keep them arranged in descending order when swapping. Here is the pseudo-code:
    I). Find the global maximal value
    II). Compare the Number with its global maximal and locate the first K edit distance from the left side to the right. (Not exactly correct. Will discuss later)
    III). Keep the indices of these digits that appearing at the edit difference
    IV). Sort the digits in the descending order and put them back to the indices recorded above
Here are two examples
    - N: 8765432109, K = 3
        * 9876543210 as the global maximal value
        * The first 3 edit difference is: 876 vs. 987
        * The indices of these 4 digits are: 0, 1, 2, 9
        * Sort the 4 digits in the descending order: 9, 8, 7, 6
        * Put 4 digits back: 9@position 0, 8@position 1, 7@position 2 and 6@position 9
        * After 3 swaps, then the maximal number we can achieve: 9875432106

    - N: 876959, K = 3
        * 998765 as the global maximal value
        * The first 3 edit difference is: 876 vs. 998
        * The indices of these 5 digits are: 0, 1, 2, 3,  and 5
        * Sort the 5 digits in the descending order: 9, 9, 8, 7, 6
        * Put 5 digits back: 9@position 0, 9@position 1, 8@position 2, 7@position 3 and 6@position 5
        * After 3 swaps, the maximal number we can achieve: 998756

As I mentioned on the 2nd step finding the K edit distance between Number and its global maximal value is not exactly correct. It does not work for some scenarios. The reason behind is that the swap distance is different from the edit distance, because one swap could make two digits into the correct place if these two digits are taking their counterpart's desired location. This should count only 1 swap distance but it counts 2 edit distance. Here is an example.
    - N: 689945932999, K = 5
        * 999999865432 as the global maximal value
        * The first 5 edit difference is: 68xx459 vs. 99xx998
        * The key here @position 1 and @position 6: pair (8, 9) and (9, 8). Swapping the digits on these two locations will make both digits into the correct place. But only one swap but two edit distance.
        * So above we have not yet consume K swaps yet. So we have to keep comparing Number and the global maximal value until exhausting K swaps.
        * The first 5 swap difference is:  68xx4593 vs. 99xx9986
        * Now keep the indices, sort the digits and put them back. The result: 999999862543

In order to calculate the correct swap distances the previous pairs have to be tracked. If two pairs have the same number but in different order (x, y) <=> (y, x), then the swap distance counts only 1. In the above pseduo-code, finding K swap distances instead of K edit distances in the 2nd step will make this algorithm fly.

Complexity analysis
It takes O(N) to find the global maximal value. Do not sort the string in the descending because it takes at least O(N*logN) (see Sort and Binary Search). Keep in mind that there are only 10 digits. Simply count the occurrence of each digits and rearrange them in the descending order. This is an O(N) solution.

Finding the K swap distance takes O(N). Simply go through from left to the right. But at the same time we need to track if (x,y)/(y,x) appear. In my implementation hash map is used, therefore it is O(1) solution for tracking the pair. Overall it is O(N) to find the K swap distance.

 The digits to swap need to be sorted as well, and this can be done in the same way as to find the global maximal value. Therefore it is O(K).

At the same time we need to keep tracking the indices of the digits to swap. The digits to swap are sorted and put back from the left to right. The largest digit to the lowest index and the smallest digit to the largest index. So the indices has to be sorted as well. In my implementation a binary map is used therefor it takes O(K*logK). Still O(K) is achievable if using hash set plus a vector in the way of using hash map above to tracking the (x,y) and (y.x) pair.

In my implementation it is a O(N) + O(K*logK) solution in computation complexity and O(N) in space complexity. Still a O(N+K) solution is achievable in computation complexity.

3. C++ Implementation
// ********************************************************************************
// Implementation
// ********************************************************************************
#include <set>
#include <string>
#include <unordered_map>

const int TOTAL_NUM_OF_DIGITS = 10;

struct SwapPair {
    SwapPair(char src, char dst)
    : a(src < dst ? src : dst),
    b(src > dst ? src : dst)
    {}

    bool operator()(const SwapPair& rhs) const {
        return a == rhs.a && b == rhs.b;
    }

    char a;
    char b;
};

struct SwapPairInfo {
    SwapPairInfo(char src, char dst, size_t f)
    : aLessThanb(src < dst), frequency(f)
    {}

    bool aLessThanb;
    size_t frequency;
};

struct SwapPairHash{
    size_t operator()(const SwapPair& key) const {
        return std::hash<long>()(key.a) ^
            std::hash<long>()(key.b);
    }

    bool operator()(const SwapPair& k1, const SwapPair& k2) const {
        return k1.operator()(k2);
    }
};

// to track the (x,y) and (y,x) pair
typedef std::unordered_map<SwapPair, SwapPairInfo, SwapPairHash, SwapPairHash> SwapPairHashMap;

std::string FindLargestNumber(const std::string& numbers,
                                                   std::vector<size_t> allDigitsMap[TOTAL_NUM_OF_DIGITS])
{
    for (size_t charIdx = numbers.size(); charIdx > 0; --charIdx) {
        assert(numbers[charIdx - 1] >= '0' && numbers[charIdx - 1] <= '9');
        allDigitsMap[numbers[charIdx - 1] - '0'].push_back(charIdx - 1);
    }

    std::string result;
    for (int num = TOTAL_NUM_OF_DIGITS - 1; num >= 0; --num) {
        if (!allDigitsMap[num].empty()) {
            for (size_t index = 0; index < allDigitsMap[num].size(); ++index) {
                result.push_back('0' + num);
            }
        }
    }

    return result;
}

std::string SwapKcharsBySorting(const std::string& numbers, const std::set<size_t>& swapIndices)
{
    size_t digitsCount[TOTAL_NUM_OF_DIGITS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    for (std::set<size_t>::const_iterator cIter = swapIndices.begin();
                             cIter != swapIndices.end(); ++cIter) {
        ++digitsCount[numbers[*cIter] - '0'];
    }

    std::vector<char> sortedSwapChars;
    for (int num = TOTAL_NUM_OF_DIGITS - 1; num >= 0; --num) {
        if (digitsCount[num] > 0) {
            for (size_t index = 0; index < digitsCount[num]; ++index) {
                sortedSwapChars.push_back('0' + num);
            }
        }
    }

    std::string result(numbers);
    size_t index = 0;
    for (std::set<size_t>::const_iterator cIter = swapIndices.begin();
        cIter != swapIndices.end(); ++cIter, ++index) {
        result[*cIter] = sortedSwapChars[index];
    }

    return result;
}

std::string KswapSolution(const std::string& numbers, const size_t k)
{
    if (k == 0 || numbers.empty()) {
        return numbers;
    }

    std::vector<size_t> digitsMap[TOTAL_NUM_OF_DIGITS];
    const std::string largestNum = FindLargestNumber(numbers, digitsMap);
    assert(largestNum.size() == numbers.size());

    if ((k + 1) >= numbers.size()) {
        // special case to reach the maximal value any way
        return largestNum;
    }


    // find the index to swap
    SwapPairHashMap swapPairHM;
    size_t swapCount = k;
    std::set<size_t> swapIndices;
    size_t tempIndexOfDigitsMap[TOTAL_NUM_OF_DIGITS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    for (size_t index = 0; index < numbers.size() && swapCount > 0; ++index) {
        if (largestNum[index] != numbers[index]) {
            const SwapPair sp(numbers[index], largestNum[index]);
            SwapPairHashMap::iterator found = swapPairHM.find(sp);
            if (found == swapPairHM.end()) {
               // keep (x,y)
               swapPairHM.insert(std::make_pair(sp,
                    SwapPairInfo(numbers[index], largestNum[index], 1)));
                --swapCount;
                swapIndices.insert(index);
                swapIndices.insert(digitsMap[largestNum[index] - '0'].at(
                    tempIndexOfDigitsMap[largestNum[index] - '0']));
                ++tempIndexOfDigitsMap[largestNum[index] - '0'];
            }
            else {
                bool aLessThanb = numbers[index] < largestNum[index];
                if (found->second.aLessThanb == aLessThanb) {
                    // (x, y) again
                    ++found->second.frequency;
                    --swapCount;
                }
                else {
                    // (y,x) found
                    if (found->second.frequency > 0) {
                        // there is (x,y) available, then do not reduce swapCount
                        --found->second.frequency;
                    }
                    else {
                        // there is not (x,y) available, then change it to (y, x) pair
                        ++found->second.frequency;
                        found->second.aLessThanb = aLessThanb;
                        --swapCount;
                    }
                }

                swapIndices.insert(index);
                swapIndices.insert(digitsMap[largestNum[index] - '0'].at(
                    tempIndexOfDigitsMap[largestNum[index] - '0']));
                ++tempIndexOfDigitsMap[largestNum[index] - '0'];
            }
        }
    }

    return SwapKcharsBySorting(numbers, swapIndices);
}

// ********************************************************************************
// TEST
// ********************************************************************************

#include <cassert>
void TestCornerCases()
{
    assert(KswapSolution("", 1).empty());
    assert(KswapSolution("9", 1) == "9");
    assert(KswapSolution("19", 1) == "91");
    assert(KswapSolution("19", 0) == "19");
    assert(KswapSolution("1234", 3) == "4321");
    assert(KswapSolution("119798699", 8) == "999987611");
}

void TestCases()
{
    assert(KswapSolution("132", 1) == "312");
    assert(KswapSolution("132", 2) == "321");
    assert(KswapSolution("7899", 2) == "9987");
    assert(KswapSolution("8799", 2) == "9987");
    assert(KswapSolution("1189119999", 5) == "9999981111");
    assert(KswapSolution("191899", 3) == "999811");
    assert(KswapSolution("191899", 2) == "999811");
    assert(KswapSolution("34155", 2) == "55143");
    assert(KswapSolution("12520", 2) == "52210");
    assert(KswapSolution("876959", 3) == "998756");
    assert(KswapSolution("6899459999", 5) == "9999998654");
    assert(KswapSolution("68994579999", 5) == "99999987654");
    assert(KswapSolution("689984599382999", 5) == "999999988382654");
    assert(KswapSolution("68994593999", 5) == "99999986543");
    assert(KswapSolution("68994597999", 5) == "99999987654");
    assert(KswapSolution("689945932999", 5) == "999999862543");
    assert(KswapSolution("876959", 2) == "996857");
    assert(KswapSolution("123456789098765432199998888777777266655", 350)
                == "999999888888777777776666655554433222110");
    assert(KswapSolution("123456789098765432199998888777777266655", 35)
                == "999999888888777777776666655554433222110");
    assert(KswapSolution("123456789098765432199998888777777266655", 9)
                == "999999888878765432165438210777777266655");
}
// ********************************************************************************


Sunday, 2 November 2014

Data Structure and Algorithm - Reversing a Sub-string to Get the Least Lexicographical String

1. Problem Description
This is a Google Interview Question SDE-2s from careerup. The following is the original description from the website.

"You are given a string S. Each character of S is either ‘a’, or ‘b’. You wish to reverse exactly one sub-string of S such that the new string is lexicographically smaller than all the other strings that you can get by reversing exactly one sub-string. 
For example, given ‘abab’, you may choose to reverse the substring ‘ab’ that starts from index 2 (0-based). This gives you the string ‘abba’. But, if you choose the reverse the substring ‘ba’ starting from index 1, you will get ‘aabb’. There is no way of getting a smaller string, hence reversing the substring in the range [1, 2] is optimal. 

Input: 
First line contains a number T, the number of test cases. 
Each test case contains a single string S. The characters of the string will be from the set { a, b }. 

Output: 
For each test case, print two numbers separated by comma; for example “x,y” (without the quotes and without any additional whitespace). “x,y” describe the starting index (0-based) and ending index respectively of the substring that must be reversed in order to acheive the smallest lexicographical string. If there are multiple possible answers, print the one with the smallest ‘x’. If there are still multiple answers possible, print the one with the smallest ‘y’. 

Constraints: 
1 ? T ? 100 
1 ? length of S ? 1000 

Sample Input: 

abab 
abba 
bbaa 
aaaa 
babaabba 

Sample Output: 
1,2 
1,3 
0,3 
0,0 
0,4"

2. Solution
This solution has algorithm complexity of O(N) and space complexity of O(1). The fundamental idea is that the result string will have as many 'a's as possible in the left hand after reversing a sub-string, because the lexicographical comparison starts from the left to the right and stops when the first character is not equal.

The start of the sub-string
This is reasonably easy question. The answer is that the sub-string starts from the first 'b' in the string from the left hand direction, if there is 'a' existing afterwards. Otherwise starts from 0.
If there is no 'b' existing in the string, then the string consists of only 'a's. Therefore the string is already at the least lexicographical state and the sub-string {0, 0} should be return according to the problem requirement - return the sub-string with the least indices if multiple choices exist. For instance 'aaaa', there is no 'b' and reversing any sub-strings will have the same result. According to the requirement the first character {0, 0} is the correct answer.
If there is 'b' exiting, then the very first 'b' from the left hand side is the starting point of the sub-string. For instance ''aaabbaabbbabbab', then the sub-string should start from 3 (the index of string starts from 0).

The end of the sub-string
It must end with 'a' that appears after the start of the sub-string, if such 'a' exists. Otherwise ends at 0. Let's take a look at a few scenarios.

Scenario 1: there is no such 'a' after the first 'b'
If there is no 'a' existing after the very first 'b', then this string is already at its least lexicographical state, Therefore the program should return {0, 0}. For instance 'aabbbb', the very first 'b' is at position 2 and afterwards there is no 'a' exits. And this string is already at the least lexicographical state, and no reversing can possibly make it lexicographically less.

Scenario 2: there is only one continuous 'a's appearing after the first 'b'
The sub-string will be starts from the very first 'b' and ends at the last 'a'. For instance 'aabbaaabbb', the very first 'b' is at position 2 and the last 'a' after the first 'b' is at position 6, 'bbaaa'. Reversing this sub-string {2, 6} will have 'aaaaabbbbb', which is the sort of string as Scenario 1 that is already at the least lexicographical state. So the correct answer for this scenario is {firstB, lastAAfterFirstB}.

Scenario 3: multiple continuous 'a's after the first 'b' but only one instance with most 'a's
There can be any number of continuous 'a's appearing after the first 'b'. These continuous 'a's consist of any number of 'a's but only one continuous 'a's have the most 'a's. For instance,
    'aabbaaabbbaaaabbbbaaaaaabb'
    - The first 'b': at position 2
    - 3 continuous 'a's after the first 'b': 'aaa', 'aaaa' and 'aaaaaa'
    - The continuous 'a' having the most 'a's are 'aaaaaa'. With 6 'a's
Now we have 3 candidates of sub-strings
    'bbaaa'                            
    'bbaaabbbaaaa'
    'bbaaabbbaaaabbbbaaaaaa'
And the last candidate is what we want, because after reversing it will have longest 'a's on the left hand side of continous 8 'a's. Other two candidates will have  5 and 6. Therefore the correct answer for this scenario is {firstB, lastAOfLongestContinuousA_AfterFirstB}. In the above example {2, 23}.

Scenario 4: multiple continuous 'a's after the first 'b' and multiple instances with most 'a's
All the above scenarios can be easily achieved with O(N) algorithm complexity and O(1) space complexity. For this scenario that I am most struggled with is to find a solution with O(N) algorithm complexity.
Initially I was thinking of recording all the instances with most 'a's, then go thought all the candidates and find the one that reversing can result the least lexicographical string (or find the one with the least indices if multiple candidates have the same result). But in this way for some extreme cases it won't guarantee O(N) algorithm complexity, for instance
    'bababababababababa'
    - the very fist 'b' in the left at position 0
    - After the very fist 'b', all the continuous 'a's have size of 1.
    - There are N/2 candidates (N is the length of the string), record them
    - Compare the N/2 candidates and find out the correct one
    - It is a O(N^2) solution

A solution with O(N^2) algorithm complexity is not what I was targeting obviously. After carefully examining this cases, a linear solution found. The key idea behind this solution is to how to pick the correct candidate (the candidate has the same length and most 'a's). Here is the pseudo-code
    1. Go through each character in the reverse direction of the string until firstB (include firstB)
    2. Record the startIndex, the numberOfA and LenToNextContinousA of the longest continuous 'a's
    3. Keep update the startIndex, numberOfA and LenToNextContinousA, if found a longer one
    4. If found 2nd continuous 'a' with the same number 'a'. Compare the following LenToNextContinousA - numberOfA character with str[startIndex - LenToNextContinousA + 1, startIndex - numberOfA]. If less, then update startIndex, LenToNextContinousA to the 2nd continuous 'a'.
    5. Until hit firstB.
Step 4 is to decide to pick up the candidate. Here is the explanation. Considering two adjacent two continuous 'a's with longest 'a's found so far.
    "a...absssssbaaaabxxxxxxbaaaabzzzzz", suppose
    reverse(xxxxxxxx) = yyyyyyyy
    reverse(sssss) = ooooo, then we have two candicates
    Result 1: a...aaaaabooooobbxxxxxxbaaaab....  <= Candidate 1
    Result 2: a...aaaaabyyyyyybaaaabsssssbb....    <= Candidate 2
Compare Result 1 and Result 2, then the two lexicographical equality is decided by the string marked as red color booooobb and  byyyyyyb. Because in the purple color part Result 2 is always less than Result 1, because xxxx can not be aaaa. Therefore we can conclude,
    - If  booooobb < byyyyyyb, then Result 1 < Result 2 and take Candidate 1
    - If  booooobb > byyyyyyb, then Result 2 < Result 1 and take Candidate 2
    - If  booooobb = byyyyyyb, then Result 2 < Result 1 and take Candidate 2

So far now we have gone through all the scenarios and the sub-string can be found in a single linear search on the string. It is a linear solution and requires constant space.

3. C++ Implementation
// Implementation
// ********************************************************************************
#include <string>

#include <cassert>

struct AabbResult {
    AabbResult(int s, int e)
        : start(s), end(e)
    {}

    int start;
    int end;
};

AabbResult AabbSolution(const std::string& str)
{
    if (str.empty()) {
        return AabbResult{ -1, -1 };
    }

    size_t firstB = str.find_first_of('b');
    if (firstB == std::string::npos) {
        // all are 'a', so need to reverse
        return AabbResult{ 0, 0 };
    }

    bool foundA = false;
    size_t rFirstA = 0;
    size_t rNextA = 0;
    size_t MaxNumOfContinousA = 0;
    for (size_t index = str.length() - 1; index > firstB; --index)
    {
        if (!foundA && rFirstA == 0 && str[index] == 'a') {
            foundA = true;
            rFirstA = index;
            continue;
        }

        if (foundA && str[index] != 'a') {
            // find the first continuous 'a' in the reverse order 
            // and record its length
            foundA = false;
            MaxNumOfContinousA = rFirstA - index;
        }

        if (!foundA && rFirstA > 0 && str[index] == 'a') {
            // find the start of the 2nd continuous 'a' in the
            // reverse order
            rNextA = index;
            break;
        }
    }

    if (rFirstA == 0) {
        // not found any 'a' after first 'b'
        // eg: aaabbbb
        return AabbResult{ 0, 0 };
    }

    if (rNextA == 0) {
        // only one continuous 'a' between firstB and rFirstA
        // aaabbbaaaabb
        return AabbResult( static_cast<int>(firstB),
                           static_cast<int>(rFirstA) );
    }

    // There are multiplie multipile continuous 'a' after firstB
    // eg: aaabbbaaabbaaabbaabb
    size_t strLenBetweenLongestA = 0;
    size_t rLongestAIndex = rFirstA;
    size_t numOfContinuousA = 0;
    bool   sameMaxLengthContinousAFound = false;
    size_t numToContinueComparing = rFirstA - rNextA;
    foundA = false;
    size_t tempIndex = 0;
    for (size_t index = rNextA + 1; index > firstB; --index, ++tempIndex) {
        if (sameMaxLengthContinousAFound) {
            // Step 4 on Scenario 4
            if (numToContinueComparing > 0) {
                if (str[index - 1] > str[rLongestAIndex - MaxNumOfContinousA - tempIndex]) {
                    // keep the continuous 'a' as it is still the least lexicographical one
                    // Case of booooobb > byyyyyyb
                    sameMaxLengthContinousAFound = false;
                }
                else if (str[index - 1] < str[rLongestAIndex - MaxNumOfContinousA - tempIndex]) {
                    // Case of booooobb < byyyyyyb         
                    // The newly found continuous 'a's is the least lexicographical one. 
                    // Update the record
                    rLongestAIndex = rFirstA;
                }

                --numToContinueComparing;
            }
            else {
                // keep the continuous 'a' as it is still the least lexicographical one
                // Case of booooobb = byyyyyyb
                sameMaxLengthContinousAFound = false;
            }
        }

        if (!foundA && str[index - 1] == 'a') {
            strLenBetweenLongestA = rLongestAIndex - (index - 1);
            rNextA = index - 1;
            numOfContinuousA = 1;
            foundA = true;
            continue;
        }

        if (foundA) {
            if (str[index - 1] == 'a') {
                ++numOfContinuousA;
                if (numOfContinuousA > MaxNumOfContinousA) {
                    // found a even longer continuous 'a's
                    // clear the flag to cancel the comparison of Step 4 on Scenario 4
                    sameMaxLengthContinousAFound = false;
                }
            }
            else {
                if (numOfContinuousA > MaxNumOfContinousA) {
                    // found a even longer continuous 'a's
                    // update the record
                    rLongestAIndex = rNextA;
                    MaxNumOfContinousA = numOfContinuousA;
                    sameMaxLengthContinousAFound = false;
                }
                else if (numOfContinuousA == MaxNumOfContinousA) {
                    // found two continuous 'a' with the same number of 'a'
                    // Set the flag to start the comparison of Step 4 on Scenario 4
                    sameMaxLengthContinousAFound = true;
                    numToContinueComparing = strLenBetweenLongestA - MaxNumOfContinousA;
                    tempIndex = 0;
                    rFirstA = rNextA;
                }

                foundA = false;
            }
        }

    }

    if (sameMaxLengthContinousAFound) {
        assert(numToContinueComparing > 0);
        // found two continuous 'a' with the same number of 'a'
        // not finished Step 4 on Scenario 4 yet before hitting firstB
        // conitnue to the reversed part
        for (size_t index = 0; index < numToContinueComparing; ++index, ++tempIndex) {
            if (str[rFirstA + index + 1] >
                              str[rLongestAIndex - MaxNumOfContinousA - tempIndex]) {
                // Case of booooobb > byyyyyyb, and
                // Case of booooobb = byyyyyyb
                return AabbResult{ static_cast<int>(firstB),
                                   static_cast<int>(rLongestAIndex) };
            }
            else if (str[rFirstA + index + 1] <
                             str[rLongestAIndex - MaxNumOfContinousA - tempIndex]) {
                // Case of booooobb < byyyyyyb
                return AabbResult{ static_cast<int>(firstB),
                                   static_cast<int>(rFirstA) };
            }
        }
    }

    return AabbResult{ static_cast<int>(firstB),
                       static_cast<int>(rLongestAIndex) };
}

// ********************************************************************************
// Test
// ********************************************************************************
void TestCaseFromCareerup()
{
    AabbResult result = AabbSolution("");
    assert(result.start == -1 && result.end == -1);
     
    result = AabbSolution("abab");
    assert(result.start == 1 && result.end == 2);

    result = AabbSolution("abba");
    assert(result.start == 1 && result.end == 3);
 
    result = AabbSolution("bbaa");
    assert(result.start == 0 && result.end == 3);
 
    result = AabbSolution("aaaa");
    assert(result.start == 0 && result.end == 0);
 
    result = AabbSolution("bbbbbbbbbbbbbbbb");
    assert(result.start == 0 && result.end == 0);

    result = AabbSolution("aaaaaaaaaaaaaa");
    assert(result.start == 0 && result.end == 0);
}

void TestCasesSingleHighestContinousA()
{
    AabbResult result = AabbSolution("babaabba");
    assert(result.start == 0 && result.end == 4);

    result = AabbSolution("babaabbaaaaabbbbaaaaaaabbbaabbaabababab");
    assert(result.start == 0 && result.end == 22);

    result = AabbSolution("aababaabbaaaaabbbbaaaaaaabbbaabbaabababab");
    assert(result.start == 2 && result.end == 24);
}

void TestCasesMultipleHighestContinuousAs()
{
    AabbResult result = AabbSolution("abbaaabbbbbbaaa"); // abbbaaabbbbbbaaa
    assert(result.start == 1 && result.end == 14);
    result = AabbSolution("abbbaaabbbbbbaaa");
    assert(result.start == 1 && result.end == 15);
    result = AabbSolution("abbaaababbbbaaa");
    assert(result.start == 1 && result.end == 5);
    result = AabbSolution("baabaabbaa");
    assert(result.start == 0 && result.end == 5);

    // a babaaa babaaa babaaa babaaa babaaa
    result = AabbSolution("ababaaababaaa");
    assert(result.start == 1 && result.end == 12);
    result = AabbSolution("ababaaababaaababaaa");
    assert(result.start == 1 && result.end == 18);
    result = AabbSolution("ababaaababaaababaaababaaa");
    assert(result.start == 1 && result.end == 24);
    result = AabbSolution("ababaaababaaababaaababaaababaaa");
    assert(result.start == 1 && result.end == 30);
}

// ********************************************************************************

Dynamic Programming - Task Scheduling

1. Problem Description

"There are at most eight servers in a data center. Each server has got a capacity/memory limit. There can be at most 8 tasks that need to be scheduled on those servers. Each task requires certain capacity/memory to run, and each server can handle multiple tasks as long as the capacity limit is not hit. Write a program to see if all of the given tasks can be scheduled or not on the servers? 

Ex: 
Servers capacity limits: 8, 16, 8, 32 
Tasks capacity needs: 18, 4, 8, 4, 6, 6, 8, 8 
For this example, the program should say 'true'. 

Ex2: 
Server capacity limits: 1, 3 
Task capacity needs: 4 
For this example, program should return false. 

Got some idea that this needs to be solved using dynamic programming concept, but could not figure out exact solution."

2. Solution
As the interviewee indicated that dynamic programming will be a very good approach to tackle this problem. I think he/she is correct. As usual the key of dynamic programming is to find the sub problem.

Assuming given the problem as
    Servers: {S1, S2, ......, Sn}
    Tasks:   {T1, T2, ......, Tm}
Try to assigned T1 to Si, i within [1, n], if T1 <= Si (the server has to have enough resource to accommodate the task).  Then we have a sub-problem as,
    Severs: {S1, S2, ..., Si-1, Si - T1, Si+1, ..., Sn}
    Tasks:  {T2, ......, Tm}

Corner Cases or Terminating Conditions:
    - Task is empty then return true.
    - If all resource available is less than all task required, then return false.
        Sum(Si) < Sum(Tj) 
    - If a task requires more resource than that any servers can provide, then return false.
        Max(Tj) > Max(Si)
    - Any server that provides less resource than the least any task requires can be ignored
        Si < Min(Tj)
   - If the tasks comes a single task and can be accommodated by servers, then return true.
They are all valid cases but not necessary to implement them all. In my solution I just implemented the 1st and the last and the solution works fine.

3. C++ Implementation
// Implementation
// ********************************************************************************
bool SchedulingSolutionDP(std::vector<int>& serverCenter,
                           const std::vector<int>& tasks, const size_t taskIndex)
{
    if (tasks.empty()) {
        return true;
    }

    if (taskIndex >= (tasks.size() - 1)) {
        // the last corner case
        for (size_t index = 0; index < serverCenter.size(); ++index) {
            if (tasks[taskIndex] <= serverCenter[index]) {
                return true;
            }
        }
        return false;
    }

    for (size_t index = 0; index < serverCenter.size(); ++index) {
        if (tasks[taskIndex] <= serverCenter[index]) {
            // create sub-problem and call recursively
            serverCenter[index] -= tasks[taskIndex];
            if (SchedulingSolutionDP(serverCenter, tasks, taskIndex + 1)){
                // recover to the original problem
                serverCenter[index] += tasks[taskIndex];
                return true;
            }
            // recover to the original problem
            serverCenter[index] += tasks[taskIndex];
        }
    }

    return false;
}
// ********************************************************************************
// Test
// ********************************************************************************
void TestCases()
{
    {
        std::vector<int> serverCenter = { 8, 16, 8, 32 };
        std::vector<int> tasks = { 18, 4, 8, 4, 6, 6, 8, 8 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == true);
    }

    {
        std::vector<int> serverCenter = { 1, 3 };
        std::vector<int> tasks = { 4 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == false);
    }

    {
        std::vector<int> serverCenter = { 7, 6 };
        std::vector<int> tasks = { 5, 3, 3, 2 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == true);
    }

    {
        std::vector<int> serverCenter = { 1, 3, 1, 2, 3, 4 };
        std::vector<int> tasks = { 4, 3, 1, 2, 3, 1 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == true);
    }

    {
        std::vector<int> serverCenter = { 2, 5, 10, 4, 13, 19, 23, 11, 8, 17 };
        std::vector<int> tasks = { 30, 2, 1 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == false);
    }

    {
        std::vector<int> serverCenter = { 8, 6, 2 };
        std::vector<int> tasks = { 5, 4, 3, 2, 1 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == true);
    }

    {
        std::vector<int> serverCenter = { 8, 6, 2 };
        std::vector<int> tasks = { 5, 4, 4, 2, 1 };
        assert(SchedulingSolutionDP(serverCenter, tasks, 0) == true);
    }
}
// ********************************************************************************