Friday, 18 July 2014

Dynamic programming - Heavy Numbers (Part I)

Other day my friend and I was on the train back home after work. We were talking about some interesting programming exercise to kill the time. He mentioned an interesting one, heavy number that he did for an interview exercise.

1. Definition
Here is the definition of heavy number, given a integer not less than zero. If the average of all its digits is more than 7, then it is called heavy number. For instance,
    - 999: (9+9+9)/3 = 9 > 7, it is a heavy number
    - 777: (7+7+7)/3 = 7 not > 7, it is not a heavy number
The exercise is to calculate how many heavy numbers given a range.

2. Analysis
I believe this is sort of similar programming exercise as I introduced in my other blog entry, Dynamic programming - Sum K of N dices with S sides. Here is the illustration,
    - S sides: 10 sides, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
                   Except the first digit can only have 9 sides, 1, 2, 3, 4, 5, 6, 7, 8, 9
    - N dices: number of digits, 999 - 3 digits/dices, 12345 - 5 digits/dices
    - Sum K: for 1 digit (0 ~ 9), K = 8, 9
                   for 2 digits (10 ~ 99), K = 15, 16, 17, 18
                   for 3 digits (100 ~ 99), K = 22, 23, 24, 25, 26, 27
                   ......
                   for n digits (pow(10, n-1) ~ pow(10, n) - 1), K = 7*n+1, ......, 9*n

3. Algorithm
Pseudo-code,
    - Calculate how many digits the given range comes across
    - Sum all them heavy numbers of the full range given i digits
    - Sum the heavy numbers of upper range
    - Minus the heavy numbers of lower range

Here is an example: given a range [80, 234567891]
    - digits across: 2, 3, 4, 5, 6, 7, 8, 9
    - Sum all the heavy number of given digits of 2, 3, 4, 5, 6, 7, 8
    - Sum all the heavy number of upper range [100000000, 234567891]
    - Minus the heavy numbers of lower range [10, 80), not including 80

The last two steps prove to be very difficult.  It is implemented in GetNumOfHeavyNumbersGivenListOfNum().
The idea is to convert to the sub-problems of calculating the heavy number of given i digits. Here is how to do with [100000000, 234567891]
    - [234567890, 234567891]
    - [234567800, 234567889]
        * Known sum = 2 + 3 + 4 + 5 + 6 + 7 + 8 = (2+8) / 2 * 7 = 35
        * Heavy number requirement:  9*7+1 = 64
        * Sub-problem: K >= 64 - 35 = 29
        * N dices: 2
        * S sides: 1st dice [0, 8], 2nd dice [0, 9]
    - [234567000, 234567799]
        * Known sum = 2 + 3 + 4 + 5 + 6 + 7 = (2+7) / 2 * 6 = 27
        * Heavy number requirement:  9*7+1 = 64
        * Sub-problem: K >= 64 - 27 = 37
        * N dices: 3
        * S sides: 1st dice [0, 7], 2nd and 3rd dice [0, 9]
     ......
    - [100000000, 199999999]
        * Known sum = 1
        * Heavy number requirement:  9*7+1 = 64
        * Sub-problem: K >= 64 - 1 = 63
        * N dices: 8
        * S sides: all [0, 9]

Here come the code:

//********************************************************************************
// HeavyNumberImpPolynomial.h
#ifndef HEAVY_NUMBER_IMP_POLYNOMIAL_H
#define HEAVY_NUMBER_IMP_POLYNOMIAL_H

#pragma once

#include <unordered_map>

class HeavyNumberImpPolynomial
{
public:
HeavyNumberImpPolynomial();
~HeavyNumberImpPolynomial();

virtual size_t GetNumOfHeavyNumbersAgainstNdigits(long nDigits);
size_t GetNumOfHeavyNumbersAgainstRange(size_t start, size_t end);

const static size_t AVERAGE_VALUE_OF_HEAVY_NUM = 7;

private:
struct HV_KEY{
long nDigits;
long SUM;
bool operator()(const HV_KEY& right) const {
return right.nDigits == nDigits && right.SUM == SUM;
}
    };

    struct HV_KEY_HASH{
size_t operator()(const HV_KEY& key) const {
            return std::hash<long>()(key.nDigits) ^std::hash<long>()(key.SUM);
        }

bool operator()(const HV_KEY& k1, const HV_KEY& k2) const {
return k1.operator()(k2);
}
    };
typedef std::unordered_map<HV_KEY, size_t, HV_KEY_HASH, HV_KEY_HASH> HV_CACHE;
size_t CountCombinatonsGivenSumOfNdigits(long nDigits, long nSides,
                                            long sum, HV_CACHE& hvCache);
void GetDigitsOfNumber(size_t num, std::vector<unsigned int>& digits);
size_t GetNumOfHeavyNumbersGivenListOfNum(const std::vector<unsigned int>& digits);
size_t GetLeastHeavyNumGivenNdigits(size_t n);
};

#endif

// HeavyNumberImpPolynomial.cpp
#include "stdafx.h"

#include "HeavyNumberImpPolynomial.h"

#include <assert.h>
#include <numeric>

HeavyNumberImpPolynomial::HeavyNumberImpPolynomial()
{
}


HeavyNumberImpPolynomial::~HeavyNumberImpPolynomial()
{
}


size_t HeavyNumberImpPolynomial::GetNumOfHeavyNumbersAgainstRange(size_t start, size_t end)
{
if (start > end) {
return 0;
}
std::vector<unsigned int> digitsOfStart;
GetDigitsOfNumber(start, digitsOfStart);
std::vector<unsigned int> digitsOfEnd;
GetDigitsOfNumber(end, digitsOfEnd);

size_t count = std::accumulate(digitsOfEnd.begin(), digitsOfEnd.end(), 0.0) /
         digitsOfEnd.size() > AVERAGE_VALUE_OF_HEAVY_NUM ? 1 : 0;

for (size_t digit = digitsOfStart.size(); digit < digitsOfEnd.size(); ++digit) {
count += GetNumOfHeavyNumbersAgainstNdigits(digit);
}

if (end >= GetLeastHeavyNumGivenNdigits(digitsOfEnd.size())) {
count += GetNumOfHeavyNumbersGivenListOfNum(digitsOfEnd);
}
if (start >= GetLeastHeavyNumGivenNdigits(digitsOfStart.size())) {
count -= GetNumOfHeavyNumbersGivenListOfNum(digitsOfStart);
}

return count;
}

size_t HeavyNumberImpPolynomial::GetNumOfHeavyNumbersAgainstNdigits(long nDigits)
{
if (nDigits < 0) {
return 0;
}

const static size_t PRE_COMPUTED_NUM_OF_HV[9] = { 0, 2, 10, 56,
                               330, 2001, 12313, 76470, 478302 };

if (nDigits <= 8) {
return PRE_COMPUTED_NUM_OF_HV[nDigits];
}

size_t numOfHN = 0;
HV_CACHE hvCache;
const size_t heaviness = nDigits * AVERAGE_VALUE_OF_HEAVY_NUM + 1;
const long nSides = 9;
for (size_t topDigits = 1; topDigits <= nSides; ++topDigits) {
numOfHN += CountCombinatonsGivenSumOfNdigits(nDigits - 1, nSides,
                               heaviness - topDigits, hvCache);
}

return numOfHN;
}

size_t HeavyNumberImpPolynomial::CountCombinatonsGivenSumOfNdigits(
           long nDigits,
           long nSides,
           long sum,
           HV_CACHE& hvCache)
{
if (sum > nSides * nDigits) {
return 0;
}

if (sum <= 0 && nDigits == 0) {
return 1;
}

const HV_KEY key{ nDigits, sum };
HV_CACHE::const_iterator cachedIter = hvCache.find(key);
if (cachedIter != hvCache.end()) {
return cachedIter->second;
}

size_t count = 0;
for (size_t val = 0; val <= nSides; ++val) {
count += CountCombinatonsGivenSumOfNdigits(nDigits - 1,
                       nSides, sum - val, hvCache);
}

hvCache.insert(std::make_pair(key, count));

return count;
}

void HeavyNumberImpPolynomial::GetDigitsOfNumber(
             size_t num,
             std::vector<unsigned int>& digits)
{
digits.clear();
if (num == 0) {
digits.push_back(0);
return;
}

while (num) {
digits.push_back(num % 10);
num /= 10;
}
return;
}

size_t HeavyNumberImpPolynomial::GetNumOfHeavyNumbersGivenListOfNum(
                const std::vector<unsigned int>& digits)
{
if (digits.empty()) {
return 0;
}

long numOfDigits = digits.size();
assert(digits[numOfDigits - 1] > 0);
long sum = numOfDigits * AVERAGE_VALUE_OF_HEAVY_NUM + 1;
size_t start;
size_t count = 0;
HV_CACHE hvCache;
const long nSides = 9;
while (numOfDigits) {
start = numOfDigits == digits.size() ? 1 : 0;
for (size_t digit = start; digit < digits[numOfDigits - 1]; ++digit) {
count += CountCombinatonsGivenSumOfNdigits(numOfDigits - 1,
                           nSides, sum - digit, hvCache);
}
sum -= digits[numOfDigits - 1];
--numOfDigits;
}

return count;
}

/*
* n = 1, return 8
* n = 2, return 69
* n = 3, return 499
* n = 4, return 2999
* n = 5, return 18999
* n = 6, return 169999
* Start to broke when n is too big for Win32
* because overflow will happen (n < 11)
*
*/
size_t HeavyNumberImpPolynomial::GetLeastHeavyNumGivenNdigits(size_t n)
{
const size_t PRE_COMPUTED_LEAST_HN[] = { 8,
69,
499,
2999,
18999,
169999,
1499999,
12999999,
109999999,
1079999999 };
if (n == 0) {
return -1;
}

if (n < 11) {
return PRE_COMPUTED_LEAST_HN[n - 1];
}

size_t sum = n*AVERAGE_VALUE_OF_HEAVY_NUM + 1;
size_t num = 0;
size_t tempDigits = 0;
while (sum) {
if (sum > 9) {
num += 9 * pow(10, tempDigits);
++tempDigits;
sum -= 9;
}
else {
break;
}
}

if ((n - tempDigits) == 1) {
num += sum * pow(10, tempDigits);
}
else {
num += (sum - 1) * pow(10, tempDigits);
num += pow(10, n - 1);
}

return num;
}

// main.cpp
#include "HeavyNumberImpPolynomial.h"

int _tmain(int argc, _TCHAR* argv[])
{
size_t numOfHN;
HeavyNumberImpPolynomial hnp;

numOfHN = hnp.GetNumOfHeavyNumbersAgainstRange(10000, 10000);
numOfHN = hnp.GetNumOfHeavyNumbersAgainstRange(789, 788);
numOfHN = hnp.GetNumOfHeavyNumbersAgainstRange(789, 56788765);
numOfHN = hnp.GetNumOfHeavyNumbersAgainstRange(0, 200000000);
}

//********************************************************************************

Optimization techniques:
    - Use pre-calculated values to speed up the process
        * The pre-calculated number of heavy number given all n digit numbers
    - Narrow the range given all n digit numbers
        * The pre-calculated least heavy number given all n digit numbers
    - Use hash map to cache the work done so far.

No comments:

Post a Comment